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Abstract--The damping of turbulence by a constant transverse magnetic field was explored using the 
standard k-e turbulence model modified to account for the direct interaction of the applied field with 
turbulent fluctuations. The coupled mass, momentum, energy and magnetic induction equations were solved 
numerically providing an efficient technique for investigating the effects of electromagnetic suppression of 
turbulence in the flow of an electrically conducting fluid through an electrically insulated pipe with a 
uniform heat flux at the wall and an applied constant transverse magnetic field. The numerical results 
qualitatively demonstrated the effects of turbulence suppression by the magnetic field and correctly pre- 
dicted the mutual antagonism between inertial and magnetic forces. The computed velocity profiles, skin 
friction, temperature profiles and the Nusselt numbers covered a range of Reynolds numbers from 16000 
to 1 000000 and Hartmann numbers from 0 to 375, and showed agreement with available experimental 
data. An empirical equation for the average Nusselt number as a function of the Peclet number and the 

Hartmann number is presented. C 1997 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Magnetohydrodynamic (MHD)  interactions have 
assumed growing importance in metallurgical appli- 
cations with the development of  techniques using 
stationary fields to suppress instabilities creating fav- 
orable flow conditions in tundish devices as reported 
by Szekely and Ilegbusi [1]. Time varying fields, on 
the other hand, have been used to induce mixing dur- 
ing the casting of  metals and also to control the growth 
of  semiconductor crystals. A comprehensive col- 
lection of  examples of  the use of  magnetic fields in 
metallurgical applications, energy conversion and 
other M H D  flows can be found in the sixth Beer- 
Sheva International Seminar on M H D  Flows and 
Turbulence edited by Branover and Unger  [2]. In 
addition, one recent novel application of  M H D  is the 
design of  superconducting M H D  propulsion system 
as reported by Imaichi [3]. 

While the first M H D  analyses were either analytical 
laminar flows or experimental investigations, the 
development of  computational  techniques and 
numerical models now allow turbulent M H D  inter- 
actions to be explored in more detail. See Branover 
and Unger  [4] for recently reported M H D  studies or 
Bradshaw [5] for an overview of a comparison of  
models for turbulent flows. 

This paper focuses on a geometrically simple M H D  
pipe flow which exhibits the complex interaction 
between an applied field and turbulence. An elec- 
trically conducting fluid flows in a horizontal, elec- 
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trically insulated pipe under either isothermal con- 
ditions or with heat transfer with a constant heat flux 
at the wall. The applied field interacts with the flow 
creating a ponderomotive body force which changes 
the axisymmetric velocity profile to a wedge-shaped 
profile while simultaneously damping out turbulent 
fluctuations. With a constant wall heat flux imposed 
on the flow, the resulting temperature profiles also 
take on an angular dependence. If  the heating rates 
are high enough to stimulate secondary flow due to 
natural convection, the field also acts to inhibit the 
natural convection. 

2. EQUATIONS 

The flow is governed by a set of  coupled partial 
differential equations that express the conservation of  
mass, momentum, energy and the interaction of  the 
flow with the magnetic field. Certain simplifying 
assumptions are listed below. 

• The viscous dissipation and Joulean heating are neg- 
lected in the energy equation. 

• The interaction of  the induced axial magnetic field 
with the flow is considered to be negligible compared 
to the interaction of  the applied magnetic field, Bo, 
with the flow. 

• The pipe wall is assumed to be electrically insulated 
with a constant heat flux at the boundary. 

• The mean flow is fully developed and the applied 
magnetic field and wall heat flux are uniform and 
constant in time. 

• All fluid properties such as density, specific heat and 
viscosity are assumed constant. 

1839 
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NOMENCLATURE 

B magnetic field [T] 
B0 applied constant magnetic field [T] 
B_ axial magnetic field induction [T] 
C specific heat [J kg-~ °C- '] 
Cf skin friction (~w/½P~) 
C,, C2, C, turbulence model constants 
d pipe diameter [m] 
Din(r, (o) magnetic damping amplification 

F~ 
Gr 
J 
k 
K 
M 
MHD 
N 
Nu 

turbulence damping functions 
buoyancy force [N m -3] 
Grashof number (gflq"d4/v2K) 
electric current density [Am 2] 
turbulent kinetic energy [m 2 s 2] 
thermal conductivity [W m ~°C-'] 
Hartmann number (BoR(o-/ix) ~/2) 

magneto-hydro-dynamic 
interaction parameter (B 2 da/p~__) 
Nusselt number 
(--2Bl(Tw-- Tb)(dT/dy)w) 

Nu average Nusselt number 
(1/~i~ Nu "d~0) 

Pe Peclet number (Re" Pr) 
Pr Prandtl number, (IxC/K) 
RT turbulent Reynolds number 

q" wall heat flux [Wm -2] 
r radial coordinate [m] 
R radius of pipe [m] 
Re Reynolds number, (~._d/v) 
Rein magnetic Reynolds number (d~:/rl) 
T temperature ['~C] 

T~ 

/)r 
V¢ 

Vz 

Y 
y+ 
Z 

6. 
G 

8H 

4, 

/1 

/~o 

Y 

P 
O- 

O'k, o-h, 
"C 

liquid bulk temperature 
(~Apv: T dA/~A pv-_ dA) 
radial velocity [m s '] 
azimuthal velocity [m s '] 
axial velocity [ms '] 
mean axial velocity [m s-t] 
distance from wall [m] 
log-law coordinate 
axial direction [m] 
thickness of Hartmann layer [m] 
turbulence dissipation rate [m 2 s -3] 
eddy diffusivity for heat transfer 
[m 2 s '] 
azimuthal angle 
magnetic diffusivity [m 2 s- ' ]  
dynamic viscosity [kg m ' s -~] 
permeability of free space 
[ k g m A - 2 s  2] 
kinematic viscosity [m 2 s '] 
density [kg m -3] 
electrical conductivity [fU' m '] 
o-,: turbulence model constants 
skin friction [N m -2] 
average wall shear stress [N m-2]. 

Subscripts 
C core region 
eft effective 
H Hartmann layer region 
t turbulent 
w wall. 

The cylindrical coordinate system for the problem 
is shown in Fig. 1. The radial coordinate, r, is positive 
outward from the axis, the polar angle, q~, is measured 
positive clockwise from the vertical and the axial coor- 
dinate, z, is positive into the paper. 

Bo 

Fig. 1. Coordinate system for turbulent pipe flow with trans- 
verse magnetic field. 

The corresponding steady-state MHD equations 
are listed as follows. 
• Continuity equation 

1 8prvr 1 Opv~ ~pv-_ 
r ~ + 7 7 ~ -  + ~zz  = °  (1) 

• Axial momentum equation 

p v :  63 2 - -  C'~Z q - r ~ r r  r/'/eff 

1 ( 8  By-\ Bo(,in~)dBz 8B.\ 
+ 77 ~P-e,,~-)+ I*-7 8+ c o s ~ r -  ). (2) 

• Energy equation 

aT 1 (~ r K e f f ~ -  r -~- Kef f (3) pCv: ~z r dr ~ ~ " 

Here, T is the local temperature and turbulence is 
modeled using the eddy viscosity concept which comes 
from the usual Reynold's-averaging technique applied 
to the appropriate equations. The effective viscosity is 
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defined as the sum of molecular viscosity and tur- 
bulent viscosity (#o~ = # + #t), and the effective ther- 
mal conductivity is modeled as the sum of molecular 
conductivity and turbulent conductivity (Ke~= 
K+ K0. The values of #~  and Ken are computed 
using the k-e turbulence model. 
• Induction equation 

o= r tr,7-D--r 7+ 7 n 

+=oOin+"z O'er ) 04 cos 4) . (4) 

Here the term q is the coefficient of magnetic diffu- 
sivity. The coupling between the momentum equation 
and the induction equation occurs via the pondero- 
motive force term in equation (2). Ampere's law 
(PoJ = V × B) was used to obtain an expression of the 
ponderomotive force which couples the momentum 
equation and the magnetic induction, Ferraro and 
Plumpton [6] and Gold [7]. It should be noted that 
the axial diffusion terms in the axial momentum equa- 
tion and the energy equation are absent. The first due 
to the fact that the flow is fully developed and the 
second because the heat transfer at the wall is constant 
causing the temperature gradient in the axial direction 
to be constant. 

The boundary conditions for equations (1) through 
(4) at r = R are given by 

~?T q" 
v . = 0 ,  Be=0 ,  and (5) 

(3r K 

and a condition of symmetry existing at r = 0 such 
that 

0v= c~B: c~T 
~r ~r ~r 0. (6) 

The important parameters that characterize the 
interaction of the magnetic field with a turbulent flow 
are the Hartmann number (M), the Reynolds number 
(Re) and the interaction parameter (N) : 

M = Bod R e =  ~ N = - -  (7) 
v pg._ 

The Hartmann number represents the square root 
of the ratio of the characteristic ponderomotive 
(electromagnetic) force (aB02O-) to the viscous force 
(#0~:/dZ), the Reynolds number the usual ratio of the 
inertia to viscous forces and the interaction parameter 
the ratio of the ponderomotive force (aB02t~:) to the 
inertia force (pg~/d). While the interaction parameter 
is fundamentally involved in the action of the field in 
damping turbulent fluctuations, it is sufficient to con- 
sider only two of the three nondimensional parameters 
because it is easy to show that N = Me~Re. Here M 
and Re will be used to describe the flow interactions 
and N is used in the turbulence model. 

3. TURBULENCE AND TURBULENCE MODELING 

Turbulence measurements in the literature indicate 
that the application of a transverse magnetic field to 
a turbulent pipe flow flattens velocity profiles (the 
Hartmann effect), damps turbulent fluctuations and 
reduces heat transfer. The measured velocity profiles 
for a flow of mercury [8], indicate that the velocity 
profile changed from an axisymmetric profile to a 
wedge shaped profile as the field was increased. Tur- 
bulent fluctuations were damped first in the central 
region of the cross section, but eventually all fluc- 
tuations could be damped out causing the flow to 
become laminar flow even if the Reynolds number was 
several orders of magnitude above the usual transition 
value of 2300. Patrick [9] mapped the damping of the 
turbulent fluctuations in a similar horizontal pipe flow 
with a transverse field and clearly showed that the 
damping depended on the radial and angular position 
in the flow as shown in Fig. 2. Measurements of the 
turbulent power spectrum [8], indicated that turbulent 
fluctuations were uniformly damped at all frequencies. 
The skin friction coefficient was first found to decrease 
due to the damping of the fluctuations and then to 
increase linearly with the Hartmann number, demon- 
strating the dominance of the Hartmann effect after 
the flow had undergone its laminarization. 

In terms of heat transfer, a survey of the literature 
indicates that a stationary magnetic field significantly 
changes the heat transfer characteristics. Genin, 
M anchkha and Sviridov [10] found that a longitudinal 
magnetic field caused a significant reduction of the 
heat transfer coefficient ; Genin, Kovalev and Sviridov 
[11] observed a similar behavior. Gardner and Lyk- 
oudis [12, 13] experimentally investigated the case of 
a transverse magnetic field in a horizontal pipe and 
found that a transverse magnetic field reduced the 
average Nusselt number by as much as 70%. In order 
to predict heat transfer in a turbulent flow subjected to 
an applied transverse magnetic field, the fundamental 
interaction between the magnetic field and turbulence 
must be understood. 

There are currently several turbulence models avail- 
able in the literature for modeling turbulent channel 
or pipe flows with applied magnetic fields. Branover 
[14], Branover and Vasil'ev [15], Branover and 
Gel'fgat [16], Branover, Gel'fgat and Tsinober [17] 
proposed mixing length models for smooth and 
rough-walled channels with either longitudinal or 
transverse magnetic fields. Lykoudis and Brouillette 
[18] also applied a mixing length approach to model 
turbulent channel flow with a transverse magnetic 
field. No suitable turbulence model has been found in 
the literature which is capable of modeling the com- 
plex radial and azimuthal interactions found in a tur- 
bulent pipe flow with a transverse magnetic field. 

3.1. Turbulence model 

Presently, one of the most widely used turbulence 
models for computing complex flows is the k-e tur- 
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Fig. 2. Qualitative picture of magnetic turbulence suppression for Re = 50 000 [9]. 

bulence model, Launder et al. [19], Jones and Launder 
[20]. Unfortunately, the k-~, turbulence model con- 
tains no term which models the damping of turbulence 
by the magnetic field. Here, a modification to the ~ 
turbulence is proposed which enables the k s tur- 
bulence model to be used for turbulent flows where 
the damping action of the magnetic field is significant. 
The modified k e turbulence model will be used to 
analyze the turbulent flow of an electrically con- 
ducting fluid in a horizontal turbulent pipe. 

The k-e turbulence model equations for modeling 

the turbulent pipe flow with transverse magnetic field 
are given by the following equations [21] : 
• Turbulence kinetic equation 

1 tO/ ~tt¢Ok5 1 0 ( ~ O k  t 
- - -  | r - - s S ] +  + 

Qkl.2'] 
-A .Dm(r ,  dp)aB~ke -eN. (8) G -  p g -  21~ ~ ~3r ) 

• Turbulence dissipation equation 
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(9) 

where N is the interaction parameter, and A and B are 
empirical constants which need to be determined from 
available experimental data. The boundary conditions 
are k = ~ = 0 at the wall and k and e have zero gradi- 
ents at r = 0 due to the symmetry of the problem. 

It should be noted that the additional term 
2¢t((~kl"21~r)) 2 in the equation (8) is introduced by the 
originators of the turbulence model for computational 
rather than physical reasons, Jones and Launder [20]. 
It was done to allow artificial assignment a value of 
zero for e at the wall and to introduce the extra term 
in the k equation. In addition, the extra term 
2##dp(a2v:l&2) 2 in equation (9) is included in the 
equation to produce satisfactory variation of k with 
distance from the wall [20]. 

In equations (8) and (9), the turbulence production 
G is given by, 

G=2/XtLk,r ) tr~+V;') 2] 

+/xt [(! 0v:'~2-p (0v:~2q,+j \0r] _i (10) 

where the turbulence model constants from refs [19, 
20] are found in the following list: (C~, = 0.09, 
C, = 1.44, 6"2 = 1.92, cr k = 1.0, a~ = 1.3). The tur- 
bulent eddy viscosity is computed using the following 
expression : 

k 2 
IX, C , f v ~ e  BN (11) Yt ~ - - ~  p 

where J2 = exp(-2.5/(1 +RT/50)) and f ,  = (1.0-0.3 
exp(-R2v)) are the standard damping functions 
with (RT = pk2/e#), Jones and Launder [20]. The 
equation for turbulent thermal conductivity is given 
by 

Yt 
Xt = pCfir,r ' (12) 

where Prt is the turbulent Prandtl number, here taken 
as Pr, = 0.9. It should be remarked that the damping 
of the magnetic field is modeled by the last terms 
in equations (8) and (9). The damping terms were 
modeled by considering the work done by the fluc- 
tuating fluid motion against the restraining influence 
of the magnetic field. The exponential terms e Bu was 
derived from a simple analysis of fluid motion in a 
transverse magnetic field, shown below, which models 
the effectiveness of the electromagnetic damping. 

One of the principal difficulties of modeling the 
turbulent pipe flow with a transverse magnetic field is 

the strong radial and angular dependence of electro- 
magnetic damping. This is caused by the simultaneous 
distortion and interaction of the induced magnetic 
field and the mean velocity field. This effect, com- 
monly referred to as the Hartmann effect, flattens the 
velocity profile and induces a hydromagnetic bound- 
ary layer close to the wall with a high induced electric 
current density at the top and bottom of the pipe cross 
section, causing a radial and azimuthal dependence in 
the problem. 

The damping force within the Hartmann layer at 
the top and bottom of the pipe cross section is much 
higher than at the side region due to the high local 
electric current density. An angular and radial vari- 
ation of the electromagnetic damping force can be 
evaluated by calculating the ratio of induced magnetic 
field gradients in the core region and in the region 
near the wall. The characteristic damping force in the 
core region is [(ix B)I<. ~ ~r~..B02, but due to higher 
mean induced electric current density, the charac- 
teristic damping force is higher within the Hartmann 
layer. Since the net electric current density across a 
vertical diameter is zero and the Hartmann layer is 
relatively small, the damping force in the Hartmann 
layer should go like the ratio of the pipe radius to the 
thickness of the hydromagnetic boundary layer, 

I(J x B ) l n  ~ a~=B0 . (13)  

Therefore, the amplification of the electromagnetic 
damping within the Hartmann layer region can be 
estimated using the following expression : 

(aB_/ay). 
O m ( r ,  q~ ) - -  - -  (14)  (as:/ay)<. 

This approximation is used since j ~ #o(~?B-/Oy) and 
the gradient of the induced field was much simpler to 
evaluate than the local electric current density. Equa- 
tion (14) naturally allows the calculation of the radial 
and angular variation of the electromagnetic damping 
force. 

The presence of the exponential term (e N) in the 
electromagnetic damping model is obtained by con- 
sidering motion of fluid in the transverse magnetic 
field. The time rate of change of fluid momentum is 
proportional to the force imposed by the transverse 
magnetic field and may be expressed by the following 
equation : 

du± 
P d t  = --auLB°~" (15) 

The solution of the deceleration of the fluid due to the 
damping influence of the transverse magnetic field is, 

U ,  ( t )  = U ,  ,O e - ' / lm ( 1 6 )  

where (/m = P~ aB2) is the characteristic magnetic 
braking time. 

The effectiveness of the turbulence damping process 
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depends on the ratio of the characteristic turbulent 
eddy turn-over time (t, = k/e) and tm. The time scale 
for large energy containing eddies is (tt = L/g:) and, 
hence, the ratio of these time scales gives, 

t t (rBZo(k) _ ( r B Z L  N. (17) 
t,, P ~,~,rgo p e_ 

Comparing equations (16) and (17), the decay of vel- 
ocity is 

ul(tk) = U±,o e -N (18) 

and the average decay of the turbulent kinetic energy 
(k ~ u 2) is postulated to be proportional to e -N. See 
ref. [21] for more details. 

It should be remarked that the turbulence modeling 
approach results in an explicit coupling between the 
turbulence equations and the magnetic induction 
equation, and allows radial and angular variation of 
electromagnetic damping to be modeled with the 
equations. The principal advantage of this approach 
is that the abrupt change of electromagnetic damping 
within the Hartmann layer is automatically captured. 
No additional model for eddy viscosity or mixing 
length is needed and the model is easily incorporated 
into the k-e turbulence model. 

4. NUMERICAL SOLUTION OF GOVERNING 
EQUATIONS 

The partial differential equations that describe the 
flow of liquid metal through a pipe with a transverse 
magnetic field are sufficiently complex that a numeri- 
cal method must be employed to solve the governing 
equations. Here, an implicit and non-iterative space 
marching method developed by Patankar and Spal- 
ding [22] was used to solve the governing equations. 
The first step in obtaining the finite difference solution 
of the pipe flow equations is to overlay a suitable 
computational mesh over half of the pipe cross section 
using grid stretching using recommendations given by 
Thompson and Warsi [23], and replace the partial 
differential equations by a set of algebraic finite 
difference equations. The resulting set of algebraic 
equations is then solved iteratively to obtain a numeri- 
cal solution to the partial differential equations. 

5. RESULTS AND DISCUSSION OF RESULTS 

The first step in the numerical analysis of the tur- 
bulent pipe flow with a transverse magnetic field was 
the validation of the numerical results for laminar 
flows in which the k-e turbulence model is taken out 
of the picture. Computed velocity profiles and skin 
friction for laminar, isothermal MHD pipe flow were 
compared to the analytical solutions of Gold [7] and 
excellent results were obtained. Calculated local and 
average Nusselt numbers for the laminar MHD heat 
transfer problems showed good agreement with the 
analytical solutions of Gardner [24]. 

Turbulent flow validations were performed by 
initially assigning a power law velocity profile and 
setting turbulent kinetic energy and dissipation values 
using formulas suggested by Rodi and Scheuerer [25]. 
Hyperbolic tangent grid stretching was used in the 
radial direction with 50-80 grid points and 20 evenly 
spaced points in the azimuthal direction. The march- 
ing step size and the grid distribution was adjusted to 
ensure that skin friction computed from calculated 
axial pressure gradient matched the skin friction com- 
puted from velocity profiles. It was found that opti- 
mum results were obtained with y+ between 1 and 2. 
The computations used 5000 marching steps or more 
to ensure complete convergence of the solution. Fur- 
thermore, for heat transfer calculations the step size 
was reduced until the imposed heat flux matched the 
calculated axial transport of thermal energy. 

5.1. Calibration of  turbulence model : velocity profiles' 
and skin Jriction 

The calibration of the k-e turbulence model with 
electromagnetic damping terms was performed at 
R e =  16000, R e = 5 0 0 0 0  and R e =  150000; and 
Hartmann number from 0 to 375. This was 
accomplished by comparing calculated velocity pro- 
files and skin friction to the experimental data of ref. 
[8]. The Hartmann layer was modeled by coupling 
the turbulence equations with the magnetic induction 
equation via equation (14). It was found that the 
constants A = 0.05 and B = 0.9 produced optimum 
results. 

Figures 3 and 4 show a comparison of computed 
velocity profiles with experimental data at 0, 45 and 
90 °. It can be seen that flattening of the velocity profile 
at 0 ~ and the rounding of the velocity profile at 90" 
was correctly predicted by the turbulence model with 
the electromagnetic damping term. Although not 
shown, the original ~ e  turbulence model was 
incapable of predicting the rounding of velocity profile 
at 90 ° because it lacks a term modeling the damping 
of turbulence by the magnetic field. 

Figure 5 shows a comparison of computed skin 
friction with experimental data. It can be seen that the 
average skin friction was accurately predicted in the 
turbulent flow regime. For high Hartmann numbers, 
the flow is laminar and the curve fit of calculated skin 
friction closely matches the experimental data and 
Shercliff's analytical solution for laminar pipe flow 
with transverse magnetic field, [26]. These results 
showed that the turbulence model was capable of pre- 
dicting the flow characteristics even when the tur- 
bulent fluctuations are damped out. 

5.2. Damping of  turbulence 
The numerical predictions qualitatively show the 

turbulence suppression by the magnetic field. Figure 
6 shows a set of typical contours of constant turbulent 
kinetic energy for flow at Re = 50 000 and M from 23 
to 91. Strong preferential damping at the top and 
bottom of the pipe can be seen. As the Hartmann 
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Fig. 3. Comparison of velocity profiles for Re = 50 000. 

0.8 

0.6 

0.4 

0.2 

1.2 t . . . . . . .  . g ' .  . . . .  . a . . .  _'_ . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . .  - _ , ~ : ~ _ - - ~  

1 

~_-0 o 

M=70 , Ref. [8] 
M=140, Ref. [8] . 
M=230, Ref. [8] 
M=70 Present work 
M=140' Present work --- 
M=240~ Present work 

0 0'.2 0'.4 016 018 
r/R 

0.6 

0.4 

0.2 

0 0'.2 

~--45° 

0 ' . 4  0 ' . 6  0 ' . 8  
r/R 

1.2 

1 

0.8 

i m . . . .  

_- 7 -_-_, . . . . . .  , 8 

- - o  

•=90 o X',;~,: 
0.6 

0.4 

0.2 

0 012 014 016 018 
r/R 

D 

Fig. 4. Comparison of velocity profiles for Re = 150 000. 

number is increased, the turbulence at the side is the 
strongest, and the contour  profiles suggest that there 
is a diffusion of  turbulence from the side to top, bot- 
tom and center of  the pipe. This damping behavior is 
consistent with measurements recorded by Patrick [9], 
Fig. 2, which indicate that turbulence at the side is the 
last region to be suppressed by the transverse magnetic 
field. It should be noted that similar turbulent kinetic 
energy contours were obtained at other Reynolds 
numbers. 

In ref. [8] the profiles of  axial turbulence intensity, 

T.I. = x~.'.z/o~, was measured at several Reynolds 
numbers. By assuming that the radial and azimuthal 
fluctuations are equal to the axial fluctuations, those 
data were converted to an equivalent turbulent kinetic 
energy, 3/2(T.I.)Z(gff), for comparison to the calcu- 
lated turbulent kinetic energy of  the present work. 
Figures 7 and 8 show this qualitative comparison of  
the converted data of  ref. [8] and the computed tur- 

bulent kinetic energy of  the present work. It can be 
seen that agreement between the calculated turbulent 
kinetic energy and the axial intensity is reasonable. 
The turbulence near the top of  the pipe, and in par- 
ticular in the core region, is damped quickly and this 
behavior is captured by the turbulence model. The 
turbulence near the wall does not  die out  as quickly 
due to the increased turbulence production caused 
by the steeping of  the velocity profile caused by the 
Har tmann effect. 

The damping of  turbulence at the sides appear to 
be underpredicted by the k -e  turbulence model. The 
electromagnetic damping of  turbulent fluctuations is 
anisotropic and the axial velocity fluctuations are pref- 
erentially damped by the transverse magnetic field. 
Consequently, the turbulence intensity estimated 
using the axial velocity fluctuation data results in a 
low estimate of  the turbulent kinetic energy of  the 
flow. It should be noted that  for 4) = 90 °, in particular, 
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Fig. 6. Computed turbulent kinetic energy contours for Re = 50 000. 

the turbulent kinetic energy levels out at high M 
values. It is believed this leveling out is a result of  the 
turbulent fluctuations aligning in the direction of the 
applied magnetic field which makes the damping of 
the turbulent velocity fluctuations less effective at 
higher M. 

5.3. Turbulent heat transfer and transverse magnetic 
.field 

The heat transfer in a horizontal pipe with trans- 
verse magnetic field was modeled by employing the 
modified k-e turbulence model. The heat transfer cal- 
culations were performed with the empirical constants 
A and B set to 0.05 and 0.9, respectively, and these 
constants were not  adjusted anytime respectively for 
all calculations. It was reasoned that if the turbulence 
model was correctly formulated, it should also quan- 
titatively predict the heat transfer process. Therefore, 
the heat transfer calculations were also used as means 
of validating the turbulence model. 

In Fig. 9 the calculated turbulent Nusselt number  
was compared to correlation curves suggested by 
Lykoudis and Touloukian [27], Skupinski et al. [28] 
and Lubarsky and Kaufman [29]. It was found that 
the Nusselt number  was moderately underpredicted 
using the k-e turbulence model (10--20%) but the 
results were reasonable if one considers the limits of 
experimental uncertainty in the data used to determine 
the other correlations. 

The heat transfer calculations with the electro- 
magnetic damping model are given in Fig. l0 which 
shows a comparison of local Nusselt number  at ~b = 0, 
30, 60 and 90 ° . These results were obtained for 
Re = 25000-1000000;  and M from 0 to 375. The 
accuracy of the solution appears to progressively 
improve from 0 to 90 °. The agreement is better at 
Reynolds numbers above 100000 and is best at the 
higher Har tmann  number. 

It should be noted the relatively poor accuracy at 
low Har tmann  number  is not  surprising in view of the 
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fact that the original k-~ turbulence model under- 
predicted the average heat transfer coefficient for ordi- 
nary turbulent flow. However,  good accuracy at high 
Reynolds number and Har tmann numbers are 
encouraging in view of the fact that the electro- 
magnetic damping model was originally calibrated at 
much lower Reynolds and Har tmann numbers using 
only velocity profiles and skin friction data. 

Examination of  Fig. 10 indicates that the exper- 
imental data for the Nusselt number profiles crosses 
over at low Reynolds number and this behavior was 
correctly captured by the turbulence model. This 
crossover occurs because increase of  heat transfer at 
the top from the steepening velocity profile exceeds 
the decrease of  heat transfer brought on by the damp- 
ing of  turbulence by the magnetic field. The steepening 
of  the velocity profile does not occur at other angles 
and the crossover behavior is consequently not  

observed at ~b = 30, 60 and 90 °. It should be noted 
that the relatively poor  agreement with the exper- 
imental data at Reynolds numbers less than 100000 
and angles less than 30 ° was caused by the natural 
convection present in the experimental data [13]. 

5.4. Interaction of natural convection and transverse 
magnetic .field 

In ref. [13] the authors indicated that their exper- 
imental temperature profiles demonstrated that natu- 
ral convection was present and appeared to be sig- 
nificant under certain conditions. A limited number 
of  calculations were performed including radial and 
azimuthal momentum equations, with the appropriate 
radial and angular buoyancy forces, in the set of  equa- 
tions to be solved simultaneously. The complexity of  
the numerical solution increased accordingly but it 
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was necessary in order to assess the importance of  
natural convection. 

With the buoyancy effects included in the equations, 
better agreement with the temperature profile data of  
ref. [13] was obtained. The computed temperature 
profiles were non-symmetric (except for ~b = 90 °) as 
shown in Figs. 11-13 due to the secondary flow of 
the natural convection. It should be noted that the 
temperature profiles became progressively more sym- 
metrical as increases in the transverse magnetic field 
suppressed more of  the natural convection motion. 

For  Re = 300000 as shown in Fig. 13, there was 

not much advantage to be gained by modeling the 
natural convection since the nearly symmetric tem- 
perature profiles indicate that effect of  natural con- 
vection is almost insignificant. It was found that there 
was practically no difference in the temperature pro- 
files with or without the inclusion of  the natural con- 
vection terms in the momentum equations. Also, there 
was not much difference in the average Nusselt 
number. These results suggest that natural convection 
may be safely omitted without incurring significant 
degradation in the accuracy of  the computed results, 
particularly for high Reynolds numbers and high 
Har tmann numbers. 

5.5. Avera#e Nusselt number 
Often, the average Nusselt number behavior is of  

primary interest. Figure 14 shows the calculated aver- 
age Nusselt number as a function of  the Peclet number 
and the Har tmann number. The average Nusselt num- 
ber behavior shows the mutual antagonism of the 
inertial force and the magnetic force. At  a fixed value 
of  Reynolds number, increasing the Har tmann num- 
ber results in a decrease in the Nusselt number, and 
for a fixed Har tmann number the Nusselt number 
curve approaches the ordinary turbulent pipe flow 
curve (i.e. B0 = 0) as the Reynolds number is 
increased. The results of  turbulent heat transfer cal- 
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culat ions may  be summarized by a curve fit equa t ion  
representing the average Nussel t  n u m b e r  as funct ion 
of  the Peclet n u m b e r  and  the H a r t m a n n  number ,  

0.00782Pe °.811 
N u  = 7 +  

[1 + O.O004M'~f(Pe)] 

where 

f ( P e )  = ( 0 . 3 + 4 . 7 5 ×  l O - S P e - 2 . 1 0 ×  lO-gPe2). 

(19) 

It should be no ted  tha t  the effect of  na tura l  convect ion 
on the average Nussel t  n u m b e r  was systematically 
investigated for G r  = 0-107, and  R e  f rom 50000 to 
150 000. It was found tha t  computa t ions  with na tura l  
convect ion did not  appreciably change the average 
Nussel t  number ,  even though  na tura l  convect ion 

caused some skewness in the tempera ture  and  velocity 
profiles. Consequent ly ,  equa t ion  (19) is a reasonable  
est imate of  average Nussel t  n u m b e r  for tu rbulen t  pipe 
flow with transverse magnet ic  field. 

6.  C O N C L U S I O N S  

An electromagnetic  damping  model  was formula ted  
and  incorpora ted  into the k-e  turbulence model• The 
inclusion of  radial  and  angular  var ia t ion  of  electro- 
magnet ic  damping  was achieved by closely coupling 
the magnet ic  induct ion equa t ion  and  turbulence equa- 
tions. The turbulence model  quali tat ively showed the 
turbulence suppression by the magnet ic  field which 
was consis tent  with exper imental  observat ions  noted  
in the li terature. The computed  velocity profile, skin 
friction, heat  t ransfer  and  tempera ture  profiles closely 
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matched the available experimental  data.  It is con- 
cluded tha t  the turbulence model  correctly modeled 
the electromagnetic  damping  of  turbulence,  and  the 
encouraging results suggest tha t  k-e turbulence model 
can be adap ted  to model  complex magneto-  
hydrodynamic  flows. 
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